Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty

نویسندگان

  • Po-Liang Lai
  • Ching-Lung Tai
  • I-Ming Chu
  • Tsai-Sheng Fu
  • Lih-Huei Chen
  • Wen-Jer Chen
چکیده

BACKGROUND Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. METHODS The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. RESULTS The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). CONCLUSIONS Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any increased cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of Mechanical Properties, Polymerization Temperature, and Handling Time of Polymethylmethacrylate Cement for Enhancing Applicability in Vertebroplasty

Polymethylmethacrylate (PMMA) bone cement is a popular bone void filler for vertebroplasty. However, the use of PMMA has some drawbacks, including the material's excessive stiffness, exothermic polymerization, and short handling time. This study aimed to create an ideal modified bone cement to solve the above-mentioned problems. Modified bone cements were prepared by combining PMMA with three d...

متن کامل

Extending polymerization time of polymethylmethacrylate cement in percutaneous vertebroplasty with ice bath cooling.

Currently available preparations of polymethylmethacrylate (PMMA) cement for percutaneous vertebroplasty have injectability times of 4-15 minutes. The potential for early polymerization requires procedures to be performed as fast as possible, sometimes with suboptimal results and waste of the cement. By cooling the PMMA mixture in an iced bath of sodium chloride solution, we can extend its inje...

متن کامل

Biomechanical impact of vertebroplasty. Postoperative biomechanics of vertebroplasty.

OBJECTIVES To examine the biomechanisms underlying adjacent fractures following vertebroplasty, an emerging procedure to stabilize fractured vertebrae. In this procedure, bone cement is injected percutaneously into the vertebral cancellous bone. Once hardened, the cement offers mechanical reinforcement to the weakened vertebra. Recent clinical and biomechanical reports suggest that this procedu...

متن کامل

Assessing cement injection behaviour in cancellous bone: an in vitro study using flow models.

Understanding the cement injection behaviour during vertebroplasty and accurately predicting the cement placement within the vertebral body is extremely challenging. As there is no standardized methodology, we propose a novel method using reproducible and pathologically representative flow models to study the influence of cement properties on injection behaviour. The models, confined between an...

متن کامل

Significantly reduced radiation exposure to operators during kyphoplasty and vertebroplasty procedures: methods and techniques.

BACKGROUND AND PURPOSE Vertebroplasty and kyphoplasty can be associated with significant radiation exposure to the operator. We compared the exposure levels to an operator performing vertebral fracture augmentation with vertebroplasty and kyphoplasty, to assess a cement injection and a monitoring technique designed to reduce this exposure. METHODS A neuroradiologist performed 189 consecutive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012